
WINCMD - the Windows(tm) Command Line Interpreter
This is the *Ultimate* in command line processors! It is a pre-release (shareware)
program that performs similar to the COMMAND.COM program under MS-DOS®, with
which we are all so familiar. Nearly every common DOS function has been included
(in some manner) within the Command Line Interpreter. Because this is a *PRE-
RELEASE* version, not all of the functions are complete at this time. Most of the
common functions are either performed internally, or are 'trapped' to prevent their
use under Windows(tm) (functions such as SHARE, CHKDSK, etc.) with appropriate
warning messages. Use of such programs would normally do damage to file or
memory structures. Other functions will eventually be incorporated (FORMAT, VOL,
LABEL, EDIT, etc.), but for now the DOS 'external' programs are run in response to
these commands. Finally, special *ENHANCEMENTS* (such as TASKLIST, KILLTASK,
background COPY, 'SET' improvements, etc.) allow the Command Line Interpreter to
take advantage of the multi-tasking environment available under Windows(tm), or
add desirable functionality to an already useful DOS command. Some of these
enhancements are still 'stubbed out'; executing these functions will generate an
information message that the 'command is not (yet) supported.' Watch for future
releases!

If you like this program, you may register it for $20. Registration entitles you to
(when available) one upgrade, plus some additional software which I think you might
like (such as a 'Windows(tm) Scheduler' which runs programs on a given day at a
given time). Note that the Windows(tm) Command Line Interpreter is a PRE-RELEASE
version, and may contain operational 'bugs' or inconsistencies which could possibly
(but not likely - I test very thoroughly) lead to loss of data or equipment damage or
any other loss or damage. Basically this is a disclaimer saying "Use it at your own
risk". There are no warantees, guarantees, or legal liabilities on the part of the
programmer/developer (me) on this version.

(as of 11/10/91)
Registration and other correspondence can be sent to:

Robert E. Frazier
7414 Mesa College Drive #32
San Diego, CA 92111

Note that this is an apartment, and I won't live there forever. So, if you can't
reach me at this address, you can try via COMPUSERVE MAIL. My Compuserve ID is
70172,177 and I am on often enough to make this means of correspondence reliable.
If possible, please use COMPUSERVE for any bug reports or suggestions for
improvement. I also accept creative ideas (hint hint).

ENHANCEMENTS

There are a *whole bunch* of enhancements in this program over the standard DOS
functions they perform. Below is a list of some of the more (popular?) likely-to-be-
used features - enjoy!

1) RUNNING WINDOWS APPLICATIONS FROM THE COMMAND LINE! This is probably
THE MOST practical of all of the features! Not only that, *but* you can also put
WINDOWS applications into BATCH FILES and then run the BATCH FILES! Note that
applications spawn *immediately* when the application name is entered on the
command line, or from a batch file. To account for this, the 'IF' command has also

been enhanced (note item #5 below).

2) Background COPY operations! In an attempt to create true multi-threaded
operations I have discovered a *really* nice way to perform background tasks under
Windows(tm). So, I have included the BACKGROUND COPY feature in WINCMD to
help gain popularity of this highly un-utilized capability that Windows(tm) can
EASILY accomplish (I also have a multi-thread API for Windows 3.0 which works
under similar principles that is currently under developement...). SO, whenever the
COPY command is entered from the command line (or a batch file) the COPY QUEUE
gets all of the applicable file names added to it. For BATCH files: note that the
'COPYING' environment variable gets assigned a value of 'TRUE' when copying! Use
the 'IF' statement to test when this is complete (you will want to do this anyway
before exiting, although the EXIT command will give you a dialog box if COPY
operations are still in progress).

3) DIR /AP and DIR /X - these two features allow you to view file attributes for
program files! The DIR function attempts to determine what type of file it is, and if
it's a program file (has an EXE header) or has an appropriate extension
(.COM,.PIF,.BAT,.CMD) the 'Type' column contains the appropriate "id string" (type
code in '<>', similar to '<DIR>'). Using '/AP' will only display those files with a non-
blank id string. Try it! The '/X' command displays all files, and includes id strings for
appropriate files. Note that the DIR function will open each file for
READ/SHARE_DENY_NONE access in the process of determining the type, so sharing
errors could potentially cause an '<ERR>' type to appear.

4) TASKLIST, KILLTASK, CLOSETASK - These 3 functions are Windows(tm) specific
functions which allow the user to perform low-level task manipulation. The
'TASKLIST' function does not base its task information on top-level windows - it goes
right into the *GUTS* of the KERNEL and grabs the master task list. This allows you
to see ALL tasks which are running (not just those with windows!). KILLTASK and
CLOSETASK represent two different methods of remotely ending a task. KILLTASK
sends a 'WM_QUIT' message, which essentially blasts the program out of existence.
Most likely a function terminated in this manner will NOT perform any necessary
cleanup - it just QUITS! A safer (and gentler) way of terminating a task is the
CLOSETASK command. This (essentially) does an ALT-F4 on each window owned by a
task. Almost every task can be safely terminated in this manner, except for
WINOLDAP (DOS) tasks, which don't do well because under Windows 3.0 you cannot
ALT-F4 a WINOLDAP task - so when I do it anyway it *chokes* and causes minor
problems - in the next release I will try to provide a means of handling this problem.

5) "IF ISTASK handle command line" - in addition to the other 'if' commands (note
that ERRORLEVEL cannot be supported - see the on-line HELP for IF for more
information) I have included the 'ISTASK' keyword to allow you to validate the
existence of a task handle. Whenever a task is successfully run the 'TASK_ID'
environment variable is assigned the task handle! Otherwise, it's BLANK (similar to
"SET TASK_ID="). Note the following segment of batch commands:
 REM ** MINIMIZE COMMAND INTERPRETER WINDOW **
 IF NOT "%WINDOW_STATE%"=="MINIMIZED" MIN
 REM ** RUN 'MYTASK.EXE' BY SEARCHING PATH **
 MYTASK.EXE
 IF "%TASK_ID%"=="" GOTO IT_FAILED
 REM ** WAIT UNTIL TASK COMPLETES BEFORE CONTINUING **
 :WAIT_FOR_TASK
 IF ISTASK %TASK_ID% GOTO WAIT_FOR_TASK

 REM ** note that if this is towards the end of a **
 REM ** relatively large batch file that the file **
 REM ** currently gets read from the start to find **
 REM ** the label 'WAIT_FOR_TASK', so it's best to **
 REM ** include such loops within the first 4k of **
 REM ** the file! **
As part of the 'GOTO' loop, this function will automatically yield to other applications
for each line it executes.

6) The MIN and MAX functions! These toggle MINIMIZED and MAXIMIZED window
states. Feel free to experiment with these. Also, whatever state the window is in is
stored in the environment variable 'WINDOW_STATE', which will be one of the
following: "MINIMIZED", "MAXIMIZED", or "NORMAL". You can use an IF statement to
check for one of these 3 (or NOT one of these 3) and take appropriate actions.

7) The EXIT function has a parameter - well, a SPECIAL parameter. To end the
Windows(tm) session, just use "EXIT WINDOWS" in place of "EXIT" - you will see a
dialog box informing you of this, and you will have opportunity to cancel (just like
with PROGRAM MANAGER). If an application refuses to exit, then you will get an
appropriate message for that as well. If WINCMD is loaded as the SHELL application
via the "SHELL=WINCMD.EXE" line in the SYSTEM.INI file (instead of
"SHELL=PROGMAN.EXE") then if you exit the 'SHELL' copy of WINCMD you will get
this message. Note that you can still run other copies of WINCMD. In a future
release I will probably provide some means of determining which one is the 'SHELL'.

KNOWN BUGS AND OTHER ANOMOLIES

Well, there are a *small* number of problems/bugs which are probably worth noting...
here goes:

1) MEM /C is not currently supported under Windows(tm) 3.0 (sorry). I having
some difficulty getting the methods down for obtaining memory information
while within Windows(tm) 3.0, and I wanted to get the product released.
Therefore a warning message will appear concerning a 'DLL' which cannot be
found when you attempt to use this command. It should be working when
release 1.0 is ready.

2) COPY operations stop during command line editing - this is due to the dialog
box that appears when you press F3. In order to make COPY operations
continue I have to make this a MODELESS dialog box, and right now that
would require too much additional code. Hopefully there won't be too many
problems due to this condition.

3) 'FOR' is not supported. Again, I am trying to get the 'pre-release' out, and
each time I add functionality the date keeps getting extended further and
further. You've got to draw the line somewhere, and here it is.

4) No 'Windows(tm)' style HELP file. There *is* an on-line HELP facility which
simulates MS-DOS® 5.0's HELP command, and it prints within the display
window for the Command Line Interpreter.

5) Ctrl-C, Ctrl-Break, Ctrl-S, and Ctrl-Q are only partially supported. Functions
such as 'TYPE' include Ctrl-S and Ctrl-Q support, and batch files may be
interrupted via Ctrl-Break. However, this is the extent of the support (Sorry).
Full support should be available in the regular release.

6) COPY /B and /A switches have no effect. Again, this is superficial functionality,
and for the most part will have little effect on reality. You can put the switches
in the command line, but it won't affect anything. It does BINARY copies by
default.

7) COPY file1+file2+file3[etc.] doesn't perform correctly. If you try this, you'll get
a UAE, so please don't try it.

8) COPY to the CON device produces unpredictable results. Please don't do it.
Use 'TYPE' instead. Also, COPY from the CON device doesn't work. Please
don't do this, either.

9) Using KILLTASK on certain tasks can produce undesirable results. If you were
to use KILLTASK on the PROGMAN task handle it would terminate, but you
wouldn't get an 'Exit Windows' message box. This can be good, and it can be
bad. (Incidentally, if you terminate PROGMAN, the Windows(tm) Command
Line Interpreter does *NOT* become the new shell!). Also, terminating a
WINOLDAP (DOS) program can be disastrous!! It results in a *TIME BOMB*
which goes off when it wants to. Please don't try it. I will put protection
against this in a later release. Incidentally, 'CLOSETASK' also shouldn't be
used on WINOLDAP tasks either... it doesn't behave as expected, and keeps
additional DOS apps from running.

10) There is no AUTOEXEC file for the Windows(tm) Command Line Interpreter
when used as the SHELL (SYSTEM.INI SHELL=WINCMD.EXE instead of
SHELL=PROGMAN.EXE). However, you *could* (theoretically) include an
argument on the command line when running WINCMD, and this argument will
become the first command executed - this could (theoretically) be a batch file,
similar to an 'AUTOEXEC.BAT ' equivalent.

11) The 'File' menu doesn't do anything. Actually, it's there because 'Exit' is in
there for compatibility. The remaining (grayed) menu choices are reserved for
future use.

12) Typing in a non-executable file (such as a WRITE file with a .WRI extension)
does NOT run the associated program! This is against what's documented,
but I haven't added the code necessary to perform this (hence the 'anomoly'
listed here).

14) The PRINT function is not supported. Again, I haven't added the code
necessary to perform this task, and it relates to the previous one so when I
add it I add this one too. Next release, ok?

15) BLINKING text doesn't work (ANSI). Well, Windows(tm) doesn't really support
BLINKING text, so I don't either...

Well I can't think of any more. If any of you out there find anything, please let me
know prior to the next release, and I'll correct the problem.

R. E. Frazier - 11/10/91

